Abstract
Survival analysis is generally defined as a set of methods for analyzing data where the outcome variable is the time until the occurrence of an event of interest. One of the methods commonly used in the survival analysis is Cox regresion model which is used to determine the factors that impact on survival times. Cox regression model has assumptions. One of them is proportional hazards assumption and the another one is there is no tied data between event times. However, in real applications, tied event times are commonly observed and Cox’s partial likelihood function needs to be modified to handle ties. It is well known methods that the Exact method, Breslow method, Efron method and Discrete method for handling tied event times. Firstly, the methods are analysed during the study, Breslow, Efron and Exact methods, which is applied on a stomach canser data set (there is tied data between event times) It was decided that Cox regression with Exact Method is the best model. Than this methods is applied Acute Myocardial Infarction data set which has no tied data between event times and it is found the same resuts at all methods.
Keywords: Cox Regression, Survival Analysis, Tied Survival Times
Öz
Yaşam çözümlemesi, tanımlanan herhangi bir olayın belirli bir başlangıç noktasından, ortaya çıkmasına kadar geçen sürenin incelenmesinde kullanılan istatistiksel yöntemler topluluğudur. Yaşam çözümlemesinde sıkça kullanılan yöntemlerden biri yaşam süresi üzerinde etkili olan faktörlerin belirlenmesinde kullanılan Cox regresyon modelidir Cox regresyon modelinin orantılı tehlikeler varsayımına ek olarak bir diğer varsayımı ise eş zaman durumunun meydana gelmemiş olmasıdır. Ancak çalışmalarda genellikle eş zamanlı olarak meydana gelen başarısızlıklara rastlanmaktadır ve bu durum özel çözüm gerektirmektedir. Kesin yöntem, Breslow yöntemi, Efron yöntemi ve Kesikli yöntem olarak bilinen yöntemler bu özel çözümlemelerdir. Çalışma boyunca incelenen yöntemlerden Breslow yöntemi, Efron yöntemi ve Kesin yöntem, eş zamanlı gözlemlerin olduğu duruma örnek olarak mide kanseri verilerine uygulanmış Kesin yöntem ile Cox regresyon modelinin en iyi model olduğuna karar verilmiştir. Daha sonra ise eş zamanlı gözlemlerin olmadığı Akut Miyokard İnfarktüsü verilerine uygulanmış ve sonuçların aynı olduğu gözlenmiştir.
Anahtar Kelimeler: Cox Regresyon, Eş Zamanlı Yaşam Süreleri, Yaşam Çözümlemesi
Suggested citation
Yaşam Çözümlemesinde Eş Zamanlı Yaşam Süreleri. Alphanumeric Journal, 5(1), 85-102. http://dx.doi.org/10.17093/alphanumeric.323833
().References
2017.05.01.STAT.02
alphanumeric journal
Pages 85-102
Received: Sept. 7, 2016
Accepted: March 9, 2017
Published: June 30, 2017
2017 Karasoy, D., Keskin Kaplan, S.
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
scan QR code to access this article from your mobile device
Faculty of Transportation and Logistics, Istanbul University
Beyazit Campus 34452 Fatih/Istanbul/TURKEY
Bahadır Fatih Yıldırım, Ph.D.
editor@alphanumericjournal.com
+ 90 (212) 440 00 00 - 13219
alphanumeric journal has been publishing as "International Peer-Reviewed Journal" every six months since 2013. alphanumeric serves as a vehicle for researchers and practitioners in the field of quantitative methods, and is enabling a process of sharing in all fields related to the operations research, statistics, econometrics and management informations systems in order to enhance the quality on a globe scale.