• ISSN: 2148-2225 (online)

Ulaştırma ve Lojistik Kongreleri

alphanumeric journal

The Journal of Operations Research, Statistics, Econometrics and Management Information Systems

Predicting Second-Hand Car Sales Price Using Decision Trees and Genetic Algorithms

bib

Mehmet Özçalıcı, Ph.D.


Abstract

It is important to predict the sales price of second-hand car for both persons and institutions who are operating in second-hand market. The sales price of cars are affected by many factors which makes predicting difficult. Especially there is no readily available method to determine which factors are affecting the sales price most. The purpose of this study is to predict the sales price of second-hand cars with decision trees. Genetic Algortihm is used to select the most relevant features. For this purpose, 252645 advertisements are scanned fort his study. For each advertisement there are 139 features available. Different models are examined using genetic algorithms with selecting 5, 10, 15 and 20 features. The best predicting performance in the out-of-sample experiment is %65,67. Proposed model can be used as a decision support system for those operating in second-hand car market

Keywords: Data Mining, Decision Trees, Genetic Algorithm, Predicting, Second-Hand Cars

Jel Classification: C44

Karar Ağaçları ve Genetik Algoritmalar ile İkinci El Otomobil Satış Fiyat Tahmini


Öz

İkinci el araçların satış fiyatlarının önceden tahmin edilmesi, ikinci el piyasada alım satımla ilgilenen kişi ve kurumlar için önem arz etmektedir. Ancak araçların fiyatlarının birçok faktörden etkilenmesi, satış fiyatının tahmin edilmesini zorlaştırmaktadır. Özellikle araçlara ilişkin hesaplanabilen birçok değişken arasında hangilerinin en iyi tahmin performansını sergileyeceğini belirlemeye yönelik hazır bir yöntem mevcut değildir. Bu çalışmanın amacı karar ağaçları ile ikinci el otomobil satış fiyatını tahmin etmektir. Karar ağaçları için değişken seçimi genetik algoritma ile gerçekleştirilmiştir. Bu amaçla Türkiye’de faaliyet gösteren e-ticaret sitelerinden birinde yer alan 252645 adet otomobile ait satış ilanı taranmıştır. Her bir otomobile ilişkin 139 adet değişken mevcuttur. Genetik Algoritmalar yardımıyla sırasıyla 5, 10, 15 ve 20 adet değişkenin seçildiği modeller incelenmiştir. %65.67 ye varan oranda doğru tahmin gerçekleştirilebilmiştir. Önerilen yöntemi, ikinci el piyasada işlem yapan taraflar karar destek sistemi olarak kullanabilirler.

Anahtar Kelimeler: Genetik Algoritma, Karar Ağaçları, Tahmin, Veri Madenciliği, İkinci El Otomobil


Suggested citation

Özçalıcı, M. (). Karar Ağaçları ve Genetik Algoritmalar ile İkinci El Otomobil Satış Fiyat Tahmini. Alphanumeric Journal, 5(1), 103-114. http://dx.doi.org/10.17093/alphanumeric.323836

References

  • Asilkan I. ve Özcan, S. (2009) “İkinci El Otomobillerin Gelecekteki Fiyatlarının Yapay Sinir Ağları ile Tahmin Edilmesi” Süleyman Demirel Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 14(2):375-391.
  • Chen, S. (2016) “Detection of Fraudulent Financial Statements Using the Hybrid Data Mining Approach” SpringerPlus, 5-89.
  • Dahan, H., Cohen, S., Rokach, L. ve Maimon, O. (2014) Predictive Data Mining with Decision Trees, New York, Springer.
  • Daştan, H. (2016) “Türkiye’de İkinci El Otomobil Fiyatlarını Etkileyen Faktörlerin Hedonik Fiyat Modeli ile Belirlenmesi” Gazi Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 18(1):303-327.
  • Ecer, F (2013) “Türkiye’de 2. El Otomobil Fiyalarının Tahmini ve Fiyat Belirleyicilerinin Tespiti” Anadolu Üniversitesi Sosyal Bilimler Dergisi, 13(4):101-112.
  • Emel, G. G. ve Taşkın, Ç. (2005) “Veri Madenciliğinde Karar Ağaçları ve Bir Satış Analizi Uygulaması” Eskişehir Osman Gazi Üniversitesi Sosyal Bilimler Dergisi, 6(2):221-239.
  • Erdem, C. ve Şentürk, İ. (2009) “A Hedonic Analysis of Used Car Prices in Turkey” International Journal of Economic Perspectives, 3(2):141-149.
  • Geetha, A. ve Nasira, G.M. (2014) “Data Mining for Meteorological Applications: Decision Trees for Modeling Rainfall Prediction” IEEE International Conference on Computational Intelligence and Computing Research.
  • Ghareb, A.S., Bakar, A.A. ve Hamdan, A.R. (2016) “Hybrid Feature Selection Based on Enhanced Genetic Algorithm for Text Categorization” Expert Systems with Applications, 49:31-47.
  • Hadinejad, M. ve Shabgard, B. (2011) “Hedonic Price for Car in Iran”, Sosyal Bilimler Dergisi, 2:118-127.
  • Haupt, R. L. ve Haupt, S. E. (2004) Practical Genetic Algorithms, New Jersey, John Wiley & Sons.
  • İşeri, A. ve Karlık, B. (2009) “An Artificial Neural Networks Approach on Automobile Pricing”, Expert Systems with Applications, 36:2155-2160.
  • Liu, C. ve Jiang, Q. (2009) “Mixed Financial Forecasting Index System Construct and Financial Forecasting Study on the C4.5 Decision Tree” International Conference on Management and Service Science.
  • Liu, Y., Hu, L., Yan, F. ve Zhang, B. (2013) “Information Gain with Weight Based Decision Tree for the Employment Forecasting of Undergraduates” IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing.
  • Ma, Y. (2013) “The Research of Stock Predictive Model Based on the Combination of CART and DBSCAN” Ninth International Conference on Computational Intelligence and Security.
  • Oreski, S. ve Oreski, G. (2014) “Genetic Algorithm-Based Heuristic for Feature Selection in Credit Risk Assessment” Expert Systems with Applications, 41:2052-2064.
  • Panigrahi, S.S. ve Mantri, J.K. (2015) “A Text Based Decision Tree Model for Stock Market Forecasting” International Conference on Green Computing and Internet of Things.
  • Pudaruth, S. (2014) “Predicting the Price of Used Cars Using Machine Learning Techniques” International Journal of Information & Computation Technology, 4(7):753-764.
  • Sivanandam, S.N. ve Deepa, S.N. (2008) Introduction to Genetic Algorithms, New York, Springer.
  • Tong, D.L. ve Mintram, R. (2010) “Genetic Algorithm-Neural Network (GANN): A Study of Neural Network Activation Functions and Depth of Genetic Algorithm Search Applied to Feature Selection” International Journal of Machine Learning & Cybernetics, 1:75-87.
  • Tsai, C.F., Eberle, W. ve Chu, C.Y. (2013) “Genetic Algorithms in Feature and Instance Selection” Knowledge-Based Systems, 39:240-247.
  • Wan, Y., Wang, M., Ye, Z. ve Lai, X. (2016) “A Feature Selection Method Based on Modified Binary Coded Ant Colony Optimization Algorithm” Applied Soft Computing, 49:248-258.
  • Wu, J.D., Hsu, C.C. ve Chen, H.C. (2009) “An Expert System of Price Forecasting for Used Cars Using Adaptive Neuro-Fuzzy Inference” Expert Systems with Applications, 36:7809-7817.
  • Xiao, W., Zhao, Q. ve Fei, Q. (2006) “A Comperative Study of Data Mining Methods in Consumer Loans Credit Scoring Management” Journal of Systems Science and Systems Engineering, 15(4):419-435.
  • Zekic-Susac, M., Sarlija, N. ve Nensic, M. (2004) “Small Business Credit Scoring: A Comparison of Logistic Regression, Neural Network and Decision Tree Models” International Conference on Information Technology Interfaces.

Volume 5, Issue 1, 2017

2017.05.01.OR.03

alphanumeric journal

Volume 5, Issue 1, 2017

Pages 103-114

Received: Sept. 27, 2016

Accepted: May 8, 2017

Published: June 30, 2017

Full Text [482.3 KB]

2017 Özçalıcı, M.

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Creative Commons Attribution licence

scan QR code to access this article from your mobile device


Contact Us

Faculty of Transportation and Logistics, Istanbul University
Beyazit Campus 34452 Fatih/Istanbul/TURKEY

Bahadır Fatih Yıldırım, Ph.D.
editor@alphanumericjournal.com
+ 90 (212) 440 00 00 - 13219

alphanumeric journal

alphanumeric journal has been publishing as "International Peer-Reviewed Journal" every six months since 2013. alphanumeric serves as a vehicle for researchers and practitioners in the field of quantitative methods, and is enabling a process of sharing in all fields related to the operations research, statistics, econometrics and management informations systems in order to enhance the quality on a globe scale.