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ABSTRACT 

 

Chaotic prediction methods are classified as global, local and semi-local methods. In this paper, unlike the studies in the literature, 

it is aimed to compare all these methods together for stock markets in terms of prediction performance and to determine the 

best prediction method for stock markets. For this purpose, Multi-Layer Perceptron (MLP) neural networks from global methods, 

nearest neighbour method from local methods, radial basis functions from semi-local methods are used. The FTSE-100 index is 

selected to represent the stock market and applied the all methods to these data. The prediction performance is measured in 

term of root mean square error (RMSE) and normalized mean square error (NMSE). As a result of the analysis; it has been 

determined that the best prediction method for the FTSE-100 index is the semi-local method. While it is possible to make a 

maximum of 5 days prediction with global and local methods, it has been determined that up to 20 days prediction can be made 

with the semi-local prediction methods. The results show that semi-local prediction methods are successful in predicting the 

behavior of stock market. 
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1. Introduction 

The stock markets are most important part of the global economy. Any fluctuation in 
this market effects the financial health of individuals, companies and countries 
(Hassan and Nath, 2005). Therefore, the examination and prediction of the behaviour 
of these markets is one of the leading issues by investors and scientists. 

Many studies have been carried out to examine the behavior of stock markets. Elridge 
and Coleman (1993), and Abhyankar et al. (1995) claimed that index data were non-
linear; Brock et al. (1991), Mayfield and Mizrach (1992), Vaidyanathan and Krehbiel 
(1992), and Hanias et al. (2013), Webel (2012), Özdemir and Akgül (2014) showed the 
chaotic behaviour of stock market. 

Due to the inherent non-linearity, non-stationary and also chaotic characteristics of 
stock market, conventional modelling techniques such as the Box–Jenkins models 
and the non-linear models are not adequate for stock market forecasting (Kazem et 
al, 2013). Therefore, chaotic models have been proposed, which seem to be more 
adequate to explain behaviour of stock market.  

The chaotic methods are more preferred in the economy and finance literature, 
especially in the examination of stock prices and exchange rates. As Hsieh (1991) put 
it, the most important reason behind this is the ability of chaos theory to potentially 
describe the fluctuations with random appearance in economy and financial markets.  

Chaotic prediction methods suggested in literature are classified as global, local and 
semi-local. Global methods enable expression of the behaviour of system with a 
single model by using all the past information in the creation of system, in order to 
identify the future position of it. Local methods are commonly based on 
decomposition the phase space into regimes and then fitting a simple (sub) model 
for each regime (Chan and Tong, 2001). Semi-local methods may combine the 
smoothness of global predictors with the localised dependence on new information 
of local predictors (Lillekjendlie et al., 1994).  

Even though the general opinion in literature is that local methods show a better 
prediction performance as compared to global methods (Karunasinghe and Liong, 
2006), different results were obtained in various studies. Lillekjendlie et al. (1994), 
Elshorbagy et al. (2002), Karunasinghe and Liong (2006) claimed that global methods 
showed better prediction performance whereas Sivakumar et al. (2002), and Guegan 
and Mercier (2005) found that local, and semi-local methods showed better 
prediction performance, respectively.  

In the prediction studies related to the stock markets, generally chaotic prediction 
methods are compared with the other statistical methods including Box-Jenkins 
model, ARCH/GARCH models, neural networks and it has been shown that chaotic 
prediction methods show better prediction performance (Huang et al, 2010; Kazem 
et al., 2013; Özdemir ve Akgül, 2014).  

In this paper, unlike the studies in the literature, it is aimed to compare all chaotic 
prediction methods together for stock markets in terms of prediction performance 
and to determine the best prediction method for stock markets. Multi-Layer 
Perceptron neural networks from global methods, nearest neighbour method from 
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local methods, and Radial Basis Functions from semi-local method were used for this 
purpose. The rest of the paper is organized as follow: In Section 2, the chaotic time 
series prediction methods are briefly presented. In Section 3, we apply these methods 
to FTSE 100 index data and calculate the criterion. Section 4 reports the prediction 
results and draws conclusions. 

2. Chaotic Prediction Methods 

Prediction of chaotic time series is based on reconstruction of chaotic attractors from 
the observed time series 𝑥𝑡 (Takens, 1981). Where d is the embedding dimension and 
 is the time delay, Takens states that prediction could be made by creating the 𝑋𝑡 =

(𝑥𝑡, 𝑥𝑡−𝜏, 𝑥𝑡−2𝜏, … , 𝑥𝑡−(𝑑−1)𝜏)  vector obtained from the delay coordinates of embedding 
of attractors in phase space. Dynamics on the attractor define a map as 𝑓: ℜ𝑑 → ℜ𝑑   
with 𝑥𝑡+𝑇 = 𝑓(𝑋𝑡) where 𝑥𝑡 is the current state and 𝑥𝑡+𝑇 is the future state. Thus, if an 
𝑓𝑖 approximation of 𝑓 is found, 𝑓𝑖 can be used as a prediction function. (Xiaofeng and 
Lai, 1999). 

Classification of the methods used in prediction of chaotic time series as global, local 
and semi-local results from the selection of above-specified 𝑓𝑖 prediction function. 

2.1. Multi-Layer Perceptron (MLP) Neural Network 

Since all the past information in the creation of system is used for prediction, studies 
on the artificial intelligence applications, which are considered as one of the global 
methods and have become the most important tool of prediction studies in chaotic 
time series, started with Lapedes and Farber (1987). Lapedes and Farber are the first 
researchers to use multi-layer perceptron (MLP) networks among the feedback 
networks for the prediction of chaotic time series. Afterwards MLP neural networks 
started to be used in several studies (Elsner, 1992; Smaoui, 1999; Lillekjendlie et al., 
1994; Elshorbagy et al., 2002; Karunasinghe and Liong, 2006). The common opinion 
of studies carried out on MLP neural network is that MLP neural network models the 
chaotic structure in chaotic time series well. Therefore, MLP neural network has been 
used in this study as the global prediction approach. 

MLP neural networks are feed-forward, back-propagation neural networks. According 
to the counselling learning method, input and target values are given to the network, 
and network finds the best weights to minimize the error between the outputs of 
network and target values. 

There are many factors that affect the performance of MLP network. Size of the 
learning and test set, number of units in the input layer, number of hidden layers and 
number of units in the hidden layer, activation function used, and learning parameters 
affect the learning capacity of network significantly.  

2.2. Nearest Neighbour Method 

As one of the local prediction methods, the nearest neighbour method has been 
developed by Farmer and Sidorowich (1987). They stated that the local method they 
created by using the neighbouring points on phase space to make predictions is a 
more effective method as compared to other methods. 
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According to the nearest neighbour method, in order to predict the 𝑥𝑡+𝑇  point, firstly, 
the k-nearest 𝑋𝑡′  neighbour of 𝑋𝑡 is found.  Where ‖. ‖, is Euclidien or maximum norm 
distance, and 𝑋𝑡′  neighbours are   𝑡′ < 𝑡, the first k to make the minimum ‖𝑋𝑡 − 𝑋𝑡′‖  
is defined as the neighbour. Then a local predictor is construct between each 𝑋𝑡′  point 
and the related  𝑋𝑡′+𝑇 point. In the nearest neighbour method, while constructing this 
local predictor, the nearest neighbour is considered for k=1 only and �̂�𝑡+1 = 𝑥𝑡′+1 is 
determined.  

2.3. Radial Basis Functions Method 

Suggested for the prediction of chaotic time series, radial basis function method has 
been developed by Casdagli (1989). He states that the suggested method is a global 
interpolation technique that has good localization properties. 

In the radial basis function method, the data set is divided into two unequal length 
parts as the learning set that includes NL observations and test set that includes N- 
NL observations, to show the observed data set 𝑥1, 𝑥2, … , 𝑥𝑁, as similar to the artificial 
neural networks. The model is constructed by using the data in the learning set. Then 
the efficiency of the obtained model is tested by using the data in test set (Chan and 
Tong, 2001). 

Once an Nc set is selected with the centres of 𝑥𝑗
𝑐: 𝑗 = 1, … , 𝑘,   𝑥𝑗

𝑐 ∈ 𝑅𝑑, the prediction 
value is obtained, 

𝑥𝑡+1 = 𝑓(𝑋𝑡) = ∑ 𝜆𝑗𝜙(‖𝑋𝑡 − 𝑥𝑗
𝑐‖)𝑘

𝑗=1        (1) 

where 𝜙(𝑟) is a radially symmetric function on 
d  around the center of 𝑥𝑗

𝑐, 𝜆s belong 
to the 𝑋𝑡 learning set and are obtained with the solution of 𝑥𝑡+1 = 𝑓(𝑋𝑡) equation set. 
While this is not a general rule in determination of the Nc set, the nearest neighbour 
vectors are generally taken into consideration in the chaotic time series analysis. 
Therefore, k expresses the number of nearest neighbours. 

3. Chaotic Analysis of FTSE-100 Index 

3.1. Determination of Chaotic Structure 

The most important characteristics of chaotic systems are their sensitive dependence 
on initial conditions, and their fractal structure (Abarbanel et al., 1990). These 
characteristics are reviewed using the information obtained from the attractor that 
occurs in the reconstructed phase space based on observed time series. Attractors 
are structures that consist of points of a dynamic system in phase space and appear 
like an object. Therefore, the phase space where these attractors will position must 
be reconstructed firstly. The most important two parameters for reconstruction of 
phase space are time delay  and embedding dimension d. 

Data set consists of 4930 observations that include the daily closing values of FTSE-
100 index between 20.10.1997 and 28.04.2017. FTSE100 index data (𝑥𝑡) has been 
reconstructed with the following equation based on Taken’s embedding theorem in 
the d-dimensional phase space with time delay  . 

𝑋𝑡 = (𝑥𝑡 , 𝑥𝑡−𝜏, 𝑥𝑡−2𝜏, … , 𝑥𝑡−(𝑑−1)𝜏), 𝑡 = 1,2, … , 𝑁 − (𝑑 − 1)𝜏    (2) 
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Chaotic structure of the system is reviewed by calculating the fractal dimension of 
attractor, and Lyapunov exponents of the system. 

3.1.1. Determination of Time Delay and Embedding Dimension 

Average Mutual Information method developed by Fraser and Swinney (1986) has 
been used to determine the optimum time delay (𝜏).  𝐼(𝑇) values that are calculated 
up to 50 lags vary between 1,442 and 4,594. Since the first minimum value of 𝐼(𝑇), 
1,464, was obtained in the 47th lag, optimum time delay was determined as 𝜏=47 
(Figure 1). 

 
Figure 1. The Average Mutual Information as A Function of Time Delay I(T) for T=1,2,…,50 

FNN method developed by Kennel et al. (1992) was used to determine the embedding 
dimension. d value where the FNN value that is calculated by increasing the 
embedding dimension values one by one approaches zero is considered as the 
optimum embedding dimension. 

 
Figure 2. The FNNs as A Function of Embedding Dimension for d=1,…,10 

At the end of the analysis performed up to 10 embedding dimensions using the FNN 
Method, optimum embedding dimension was determined as d=5 (Figure 2). 

3.1.2. Determination of Correlation Dimension and The Largest Lyapunov 
Exponent 

Chaos for a time series could generally be defined by observing the attractor, which is 
the appearance of system in phase space, and calculating the fractal dimension of 
attractor. However, the most important indicator of whether a time series is chaotic 
is the Lyapunov exponent developed by the Russian Mathematician Aleksandr 
Lyapunov. Correlation dimension and the largest Lyapunov exponent are defined as 
the invariant characteristics of chaotic time series.  
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Correlation dimension developed by Grassberger and Procaccia (1983 a,b) is a 
measure of the complexity level of the system (Eckman and Ruelle,1985; Abarbanel 
et al.,1990). To observe whether chaos exists, the correlation exponent values are 
plotted against the corresponding embedding dimension values. Limited or saturated 
correlation exponent value indicates that the system has a chaotic structure and is 
also deterministic with a sensitive dependence on initial conditions. If the da value 
increases without bound with increase in the embedding dimension, the system 
under investigation is thought to be stochastic. When the da value reaches the 
saturation point based on the increased embedding dimension values, upper integer 
value of this saturation point is defined as correlation dimension, and indicates the 
fractal dimension of attractor. (Fraedrich, 1986; Shang et al., 2005).  

Correlation exponents that are calculated up to 20 embedding dimensions vary 
between 0,965 and 2,574 (Figure 3). 

 
Figure 3. The Correlation Exponents as A Function of Embedding Dimension for d=1,2,…20 

According to Figure 3, correlation exponent values reach the saturation point around 
2.5-2.6 starting from the 5th embedding dimension. Therefore, the correlation 
dimension has been determined as 𝑑𝑎 = 3. Furthermore, the fact that correlation 
exponent values reach the saturation point after a specific embedding dimension 
shows that FTSE-100 index series has a fractal structure, is deterministic and shows 
sensitive dependence to initial conditions. 

Two near initial conditions on the attractor separate from each other at a distance 
that grows incrementally depending on time along the orbit. Average growth rate of 
such distance is called Lyapunov exponent. While orbits move away from each other 
slowly in periodic systems, such movement is exponentially rapid in chaotic systems. 
Positive value, zero value and negative value of Lyapunov exponent refer to sensitive 
dependence (chaos), periodicity (or semi-periodicity) and stable equilibrium, 
respectively. (Kantz and Schreiber, 2004: 66; Sprott, 2010: 20; Wolf et al., 1985: 286). 

The greatest Lyapunov exponent value of FTSE-100 index data was calculated using 
the algorithm of Kantz (1994) and found as 𝜆1 = 0,01. Since the greatest Lyapunov 
exponent value obtained is positive, it is seen that the series shows a sensitive 
dependence on initial conditions and has a chaotic structure. 
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3.2. Prediction 

While applying the prediction methods, data set has been divided into two so that 
90% is learning set and 10% is test set. 

In the prediction of chaotic time series, there is a relationship between the maximum 
prediction length and largest Lyapunov exponent so that: 

Maximum Prediction Length=Δt𝑚𝑎𝑥 =
1

𝜆1
      (3) 

(Abarbanel, 1996; Sprott, 2003). In this study, maximum prediction length was found 
as 100 days. 

In order to observe the performance of prediction methods that are covered in this 
study based on the prediction length, various prediction lengths including 5, 10, 20, 
50 and 100 have been taken into account.  

Prediction performances were compared based on the RMSE and NMSE (Normalized 
Mean Squared Error) criteria. NMSE criterion allows comparison of prediction 
performance of chaotic prediction models with the performance of stable predictor 
�̂�𝑡 = �̅� which indicates the average value of test set, and random walk predictor �̂�𝑡 =

�̅�𝑡−1. Main reason for using the NMSE criterion is the belief that it might be useful if 
the used chaotic predictors show a better performance than the reference predictors. 

RMSE and NMSE values have been calculated using the Equation 4. 

𝑅𝑀𝑆𝐸 = √
∑ 𝑒𝑡

2

𝑁
          (4) 

𝑁𝑀𝑆𝐸 = 𝑚𝑎𝑥 (
∑ 𝑒𝑡

2

∑(𝑥𝑡−�̅�)2  ;  
∑ 𝑒𝑡

2

∑(𝑥𝑡−𝑥𝑡−1)2)      (5) 

If NMSE≅0 prediction performance is perfect. 

If NMSE>1 it is worse that the performance of reference predictors (Lillekjendlie et 
al.,1994; Karunasinghe and Liong, 2006). 

Following criteria were used in the prediction study of FTSE-100 index performed 
using Multi-Layer Perceptron (MLP) neural network. 

Since delayed values of time series are used in the input layer of MLP network, there 
are 4 units. The study was conducted with 1 and 2 hidden layers. There is only one 
unit that consists of target values in the output layer. Sigmoid and hyperbolic tangent 
activation functions were used in the hidden layer and output layer. The learning 
parameters, learning rate and momentum coefficient were taken as 0.2 and 0.9, 
respectively. 

Firstly, MLP application was carried out with a single hidden layer only. Number of 
units in the hidden layer were changed between 1 and 15. Study was conducted by 
changing the activation functions in the hidden layer and output layer for each unit. 
The best error values were obtained when sigmoid activation function was used both 
in the hidden layer and output layer. 

In MLP study with two hidden layers, the study was again conducted by changing the 
number of units in the first and second hidden layer between 1 and 15. As in the MLP 
network with single hidden layer, it was observed that when hyperbolic tangent 
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activation function was used in the output layer of neural network with two hidden 
layers, errors multiplied approximately by four.  

According to the obtained results, the best network architecture of FTSE-100 index 
included 8 units in the first hidden layer and 7 units in the second hidden layer, and 
was the 4-8-7-1 architecture model where sigmoid activation function was used both 
in the hidden layer and output layer. 

In prediction studies conducted using the Nearest Neighbour Method, both direct 
(single step) and iterative (multi step) prediction approaches were taken into 
consideration. Distances between neighbour points were calculated by considering 
the Euclidean and Max Norm.  

In the review of obtained prediction performances, it was observed that predictions 
made using the direct method provided better error values as compared to the 
predictions made using the iterative method, in predictions performed via nearest 
neighbour method.  

The best model obtained in terms of prediction performance was the model in which 
direct prediction method and Euclidian distance were used.  

Prediction studies with radial basis function method were conducted by including 
different numbers of neighbours (k) and different radial basis functions in the 
process, in addition to the criteria used in nearest neighbour method. In the case of 
k>d+1, prediction values were individually calculated for k=6, 7 and 8. Among the 
Radial Basis functions, Linear, Cubic, Thin Plate Spline, Gaussian and Multiquadratic 
functions were used.  

Since the error values grew extremely for many models used as the prediction length 
increased in prediction studies conducted using the radial basis function method, no 
predictions were made. In general, it was observed that as the number of nearest 
neighbours (k) increased, calculable prediction length increased too. 

It was observed also in the radial basis function method that predictions made with 
direct method demonstrated a much better performance as compared to predictions 
made with iterative method. 

The best prediction performances for k=6 were obtained when linear radial basis 
function and Max Norm distance were used. The best prediction performances for 
k=7 and 8 were obtained when linear radial basis function and Euclidean distance 
were used.  

RMSE and NMSE values for all models are given in Table 1 for the comparison of 
prediction performances based on the prediction length of selected models. 
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Prediction 
Length 

MLP NN RBF (k=6) RBF (k=7) RBF (k=8) 

RMSE NMSE RMSE NMSE RMSE NMSE RMSE NMSE RMSE NMSE 

5 58,979 1,160 39,819 0,627 53,347 1,126 35,460 0,585 38,495 0,586 

10 113,814 2,754 47,857 1,229 42,051 0,949 38,283 0,786 32,875 0,580 

20 190,917 7,680 57,205 1,383 103,292 4,510 66,747 1,883 42,65 0,769 

50 216,595 7,428 70,626 1,441 125,671 4,562 75,607 1,651 95,388 2,628 

100 340,862 17,323 98,606 1,435 -- -- 182,484 4,915 198,174 5,797 

Table 1. RMSE and NMSE Values 

Results 

In this paper, it is compared the global, local and semi-local chaotic prediction 
methods in terms of prediction performance for stock markets.  In order to observe 
the performance of prediction methods that are covered in this study based on the 
prediction length, various prediction lengths including 5, 10, 20, 50 and 100 have been 
taken into account. When the prediction results given in Table 1 are evaluated; 
according to the RMSE values, radial basis function method and nearest neighbour 
method generally provide smaller error values in short-term, and long-term 
predictions, respectively.  

According to NMSE values, it is again seen that prediction errors of the predictions 
made using the radial basis function method are smaller than those of other 
methods. Even though the maximum prediction length of FTSE-100 index data was 
determined as 100 days, it was seen that prediction can be made for a maximum of 
20 days, and making predictions using these methods would not be suitable for 
predictions after 20 days. 

Considering all the prediction results obtained for FTSE 100 index data based on the 
RMSE and NMSE criteria, it was found that the worst prediction performance was 
obtained with MLP neural network whereas the best prediction performance was 
gained using the Radial Basis function method which is calculated for k=8. 

When the chaotic prediction methods applied on FTSE 100 index data are assessed 
in terms of prediction performance, it is seen that semi-local prediction method 
demonstrates a better prediction performance as compared to global and local 
prediction methods. While it is possible to make a prediction of index values for a 
maximum of 5 days using the nearest neighbour method, it was seen that prediction 
can be made for up to 20 days using the radial basis function method which is among 
the semi-local prediction methods. It is clear that semi-local prediction methods can 
provide successful results in the explanation and prediction of stock market 
behaviours by combining the advantages of global prediction methods and local 
prediction methods. 
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